Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34
1.
Heliyon ; 10(9): e30329, 2024 May 15.
Article En | MEDLINE | ID: mdl-38707340

Both high glucose intake with a high-fat meal and inhibition of dipeptidyl peptidase-4 (DPP4) have been associated with plasma lipid-lowering effects, but mechanistic understanding linking glucose and fat absorption is lacking. We here hypothesized that glucose ameliorates intestinal fatty acid uptake via a pathway involving DPP4. A concentration of 50 mM glucose reduced mean DPP4 activity in differentiated Caco-2 enterocytes by 42.5 % and fatty acid uptake by 66.0 % via nutrient sensing by the sweet taste receptor subunit TAS1R3 and glucose transporter GLUT-2. No effect of the DPP4 substrates GLP-1 and GIP or of the cellular energy status on the reduced uptake of fatty acids was seen, but a direct interaction between DPP4 and fatty acid transporters is suggested. Conclusively we identified DPP4 as a regulator of fatty acid absorption in Caco-2 enterocytes that mediates the inhibition of intestinal fatty acid uptake by glucose via an interplay of GLUT-2 and TAS1R3.

2.
J Med Chem ; 67(5): 4036-4062, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38442487

A substantial portion of patients do not benefit from programmed cell death protein 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) checkpoint inhibition therapies, necessitating a deeper understanding of predictive biomarkers. Immunohistochemistry (IHC) has played a pivotal role in assessing PD-L1 expression, but small-molecule positron emission tomography (PET) tracers could offer a promising avenue to address IHC-associated limitations, i.e., invasiveness and PD-L1 expression heterogeneity. PET tracers would allow for improved quantification of PD-L1 through noninvasive whole-body imaging, thereby enhancing patient stratification. Here, a large series of PD-L1 targeting small molecules were synthesized, leveraging advantageous substructures to achieve exceptionally low nanomolar affinities. Compound 5c emerged as a promising candidate (IC50 = 10.2 nM) and underwent successful carbon-11 radiolabeling. However, a lack of in vivo tracer uptake in xenografts and notable accumulation in excretory organs was observed, underscoring the challenges encountered in small-molecule PD-L1 PET tracer development. The findings, including structure-activity relationships and in vivo biodistribution data, stand to illuminate the path forward for refining small-molecule PD-L1 PET tracers.


B7-H1 Antigen , Positron-Emission Tomography , Humans , B7-H1 Antigen/metabolism , Ligands , Tissue Distribution , Positron-Emission Tomography/methods , Immunohistochemistry
3.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 24.
Article En | MEDLINE | ID: mdl-37513962

PD-1/PD-L1 immune checkpoint blockade for cancer therapy showed promising results in clinical studies. Further endeavors are required to enhance patient stratification, as, at present, only a small portion of patients with PD-L1-positive tumors (as determined by PD-L1 targeted immunohistochemistry; IHC) benefit from anti-PD-1/PD-L1 immunotherapy. This can be explained by the heterogeneity of tumor lesions and the intrinsic limitation of multiple biopsies. Consequently, non-invasive in vivo quantification of PD-L1 on tumors and metastases throughout the entire body using positron emission tomography (PET) imaging holds the potential to augment patient stratification. Within the scope of this work, six new small molecules were synthesized by following a ligand-based drug design approach supported by computational docking utilizing lead structures based on the (2-methyl-[1,1'-biphenyl]-3-yl)methanol scaffold and evaluated in vitro for potential future use as PD-L1 PET tracers. The results demonstrated binding affinities in the nanomolar to micromolar range for lead structures and newly prepared molecules, respectively. Carbon-11 labeling was successfully and selectively established and optimized with very good radiochemical conversions of up to 57%. The obtained insights into the significance of polar intermolecular interactions, along with the successful radiosyntheses, could contribute substantially to the future development of small-molecule PD-L1 PET tracers.

4.
Mol Nutr Food Res ; 67(16): e2200601, 2023 08.
Article En | MEDLINE | ID: mdl-37173826

SCOPE: Red meat, a staple food of Western diets, can also induce IgE-mediated allergic reactions. Yet, apart from the heat-labile protein serum albumin and the carbohydrate α-Gal, the molecules causing allergic reactions to red meat remain unknown. METHODS AND RESULTS: IgE reactivity profiles of beef-sensitized individuals are analyzed by IgE-immunoblotting with protein extracts from raw and cooked beef. Two IgE-reactive proteins are identified by peptide mass fingerprinting as myosinlight chain 1 (MYL1) and myosin light chain 3 (MYL3) in cooked beef extract and are designated Bos d 13 isoallergens. MYL1 and MYL3 are produced recombinantly in Escherichia coli. ELISAs proved their IgE reactivity and circular dichroism analysis showed that they represent folded molecules with remarkable thermal stability. In vitro gastrointestinal digestion experiments showed the higher stability of rMYL1 as compared to rMYL3. Exposure of a monolayer of Caco-2 cells to rMYL1 indicated that the molecule is able to cross intestinal epithelial cells without disturbing the integrity of the tight junctions, suggesting the sensitizing capacity of MYL1. CONCLUSION: MYLs are identified as novel heat-stable bovine meat allergens.


Allergens , Food Hypersensitivity , Humans , Cattle , Animals , Food Hypersensitivity/etiology , Hot Temperature , Caco-2 Cells , Immunoglobulin E , Meat/analysis , Cross Reactions
5.
J Agric Food Chem ; 71(13): 5314-5325, 2023 Apr 05.
Article En | MEDLINE | ID: mdl-36943188

Human gingival fibroblast cells (HGF-1 cells) present an important cell model to investigate the gingiva's response to inflammatory stimuli such as lipopolysaccharides from Porphyromonas gingivalis (Pg-LPS). Recently, we demonstrated trans-resveratrol to repress the Pg-LPS evoked release of the pro-inflammatory cytokine interleukin-6 (IL-6) via involvement of bitter taste sensing receptor TAS2R50 in HGF-1 cells. Since HGF-1 cells express most of the known 25 TAS2Rs, we hypothesized an association between a compound's bitter taste threshold and its repressing effect on the Pg-LPS evoked IL-6 release by HGF-1 cells. To verify our hypothesis, 11 compounds were selected from the chemical bitter space and subjected to the HGF-1 cell assay, spanning a concentration range between 0.1 µM and 50 mM. In the first set of experiments, the specific role of TAS2R50 was excluded by results from structurally diverse TAS2R agonists and antagonists and by means of a molecular docking approach. In the second set of experiments, the HGF-1 cell response was used to establish a linear association between a compound's effective concentration to repress the Pg-LPS evoked IL-6 release by 25% and its bitter taste threshold concentration published in the literature. The Pearson correlation coefficient revealed for this linear association was R2 = 0.60 (p < 0.01), exceeding respective data for the test compounds from a well-established native cell model, the HGT-1 cells, with R2 = 0.153 (p = 0.263). In conclusion, we provide a predictive model for bitter tasting compounds with a potential to act as anti-inflammatory substances.


Taste Threshold , Taste , Humans , Interleukin-6/genetics , Interleukin-6/pharmacology , Gingiva , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Porphyromonas gingivalis , Fibroblasts , Receptors, G-Protein-Coupled/genetics
6.
Food Chem X ; 15: 100446, 2022 Oct 30.
Article En | MEDLINE | ID: mdl-36211761

Currently, there is limited insight into the influence of the different binding sites of agonists and antagonists of the sweet taste receptor TAS1R2/TAS1R3 on temporal sensory properties of sweet tasting compounds. We investigated whether the binding site and a competitive or allosteric inhibition of TAS1R2/TAS1R3 influence the time-dependent sensory perception and in vitro TAS1R2/TAS1R3-activation profiles. We compared time-intensity ratings of cyclamate, NHDC, acesulfame K, and aspartame with and without lactisole with the corresponding TAS1R2/TAS1R3-activation in transfected HEK293 cells. In combination with lactisole, cyclamate and NHDC demonstrated a shift of the dose-response curve corresponding to a competitive inhibition by lactisole in the sensory and the cell experiments. Allosteric inhibition by lactisole for aspartame and acesulfame K was seen in the cell experiments, but not the sensory ratings. In conclusion, the data do not support a major impact of the binding site on the time-intensity profile of the tested sweeteners.

7.
Front Nutr ; 9: 831726, 2022.
Article En | MEDLINE | ID: mdl-35694162

Emerging evidence points to a major role of salivary flow and viscoelastic properties in taste perception and mouthfeel. It has been proposed that sweet-tasting compounds influence salivary characteristics. However, whether perceived differences in the sensory properties of structurally diverse sweet-tasting compounds contribute to salivary flow and saliva viscoelasticity as part of mouthfeel and overall sweet taste perception remains to be clarified. In this study, we hypothesized that the sensory diversity of sweeteners would differentially change salivary characteristics in response to oral sweet taste stimulation. Therefore, we investigated salivary flow and saliva viscoelasticity from 21 healthy test subjects after orosensory stimulation with sucrose, rebaudioside M (RebM), sucralose, and neohesperidin dihydrochalcone (NHDC) in a crossover design and considered the basal level of selected influencing factors, including the basal oral microbiome. All test compounds enhanced the salivary flow rate by up to 1.51 ± 0.12 g/min for RebM compared to 1.10 ± 0.09 g/min for water within the 1st min after stimulation. The increase in flow rate was moderately correlated with the individually perceived sweet taste (r = 0.3, p < 0.01) but did not differ between the test compounds. The complex viscosity of saliva was not affected by the test compounds, but the analysis of covariance showed that it was associated (p < 0.05) with mucin 5B (Muc5B) concentration. The oral microbiome was of typical composition and diversity but was strongly individual-dependent (permutational analysis of variance (PERMANOVA): R 2 = 0.76, p < 0.001) and was not associated with changes in salivary characteristics. In conclusion, this study indicates an impact of individual sweet taste impressions on the flow rate without measurable changes in the complex viscosity of saliva, which may contribute to the overall taste perception and mouthfeel of sweet-tasting compounds.

8.
Nutrients ; 14(3)2022 Jan 29.
Article En | MEDLINE | ID: mdl-35276952

We investigated whether the long-term intake of a typical sugar-sweetened soft drink (sugar-sweetened beverage, SSB) alters markers for taste function when combined with a standard diet (chow) or a model chow mimicking a Western diet (WD). Adult male CD1 mice had ad libitum access to tap water or SSB in combination with either the chow or the WD for 24 weeks. Energy intake from fluid and food was monitored three times a week. Cardiometabolic markers (body weight and composition, waist circumference, glucose and lipid profile, and blood pressure) were analyzed at the end of the intervention, as was the number and size of the fungiform papillae as well as mRNA levels of genes associated with the different cell types of taste buds and taste receptors in the circumvallate papillae using a cDNA microarray and qPCR. Although the overall energy intake was higher in the WD groups, there was no difference in body weight or other cardiometabolic markers between the SSB and water groups. The chemosensory surface from the fungiform papillae was reduced by 36 ± 19% (p < 0.05) in the WD group after SSB compared to water intake. In conclusion, the consumption of the SSB reduced the chemosensory surface of the fungiform papillae of CD1 mice when applied in combination with a WD independent of body weight. The data suggest synergistic effects of a high sugar-high fat diet on taste dysfunction, which could further influence food intake and promote a vicious cycle of overeating and taste dysfunction.


Diet, Western , Sugar-Sweetened Beverages , Animals , Body Weight , Diet, Western/adverse effects , Male , Mice , Sugars , Taste
9.
Int J Mol Sci ; 22(11)2021 May 30.
Article En | MEDLINE | ID: mdl-34070942

Among mammals, serotonin is predominantly found in the gastrointestinal tract, where it has been shown to participate in pathway-regulating satiation. For the stomach, vascular serotonin release induced by gastric distension is thought to chiefly contribute to satiation after food intake. However, little information is available on the capability of gastric cells to synthesize, release and respond to serotonin by functional changes of mechanisms regulating gastric acid secretion. We investigated whether human gastric cells are capable of serotonin synthesis and release. First, HGT-1 cells, derived from a human adenocarcinoma of the stomach, and human stomach specimens were immunostained positive for serotonin. In HGT-1 cells, incubation with the tryptophan hydroxylase inhibitor p-chlorophenylalanine reduced the mean serotonin-induced fluorescence signal intensity by 27%. Serotonin release of 147 ± 18%, compared to control HGT-1 cells (set to 100%) was demonstrated after treatment with 30 mM of the satiating amino acid L-Arg. Granisetron, a 5-HT3 receptor antagonist, reduced this L-Arg-induced serotonin release, as well as L-Arg-induced proton secretion. Similarly to the in vitro experiment, human antrum samples released serotonin upon incubation with 10 mM L-Arg. Overall, our data suggest that human parietal cells in culture, as well as from the gastric antrum, synthesize serotonin and release it after treatment with L-Arg via an HTR3-related mechanism. Moreover, we suggest not only gastric distension but also gastric acid secretion to result in peripheral serotonin release.


Arginine/pharmacology , Gastric Acid/metabolism , Parietal Cells, Gastric/drug effects , Protons , Serotonin/biosynthesis , Cell Line, Tumor , Fenclonine/pharmacology , Gene Expression , Granisetron/pharmacology , Humans , Hydrogen-Ion Concentration , Parietal Cells, Gastric/cytology , Parietal Cells, Gastric/metabolism , Protease Inhibitors/pharmacology , Receptors, Serotonin, 5-HT3/genetics , Receptors, Serotonin, 5-HT3/metabolism , Serotonin Antagonists/pharmacology , Stomach/cytology , Stomach/drug effects , Tissue Culture Techniques , Tryptophan Hydroxylase/antagonists & inhibitors , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
10.
J Agric Food Chem ; 69(45): 13339-13349, 2021 Nov 17.
Article En | MEDLINE | ID: mdl-33461297

Recent data have shown anti-inflammatory effects for trans-resveratrol (RSV) and rosmarinic acid (RA) in various immune-competent cell models through reduction of lipopolysaccharide (LPS)-induced interleukin 6 (IL-6) release. Because both compounds have been reported to taste bitter, we hypothesized an involvement of human bitter taste sensing receptors (TAS2Rs) on IL-6 release in LPS-treated human gingival fibroblasts (HGF-1). First, the bitter taste intensity of RSV and RA was compared in a sensory trial with 10 untrained panelists, of whom 90% rated a 50 ppm of RSV in water solution more bitter than 50 ppm of RA. A mean 19 ± 6% reduction of the RSV-induced bitter taste intensity was achieved by co-administration of 50 ppm of the bitter-masking, TAS2R43 antagonist homoeriodictyol (HED). Mechanistic experiments in a stably CRISPR-Cas9-edited TAS2R43ko gastric cell model revealed involvement of TAS2R43 in the HED-evoked effect on RSV-induced proton secretion, whereas the cellular response to RSV did not depend upon TAS2R43. Next, the IL-6 modulatory effect of 100 µM RSV was studied in LPS-treated immune-competent HGF-1 cells. After 6 h of treatment, RSV reduced the LPS-induced IL-6 gene expression and protein release by -46.2 ± 12.7 and -73.9 ± 2.99%, respectively. This RSV-evoked effect was abolished by co-administration of HED. Because real-time quantitative polymerase chain reaction analyses revealed a regulation of TAS2R50 in RSV with or without HED-treated HGF-1 cells, an siRNA knockdown approach of TAS2R50 was applied to verify TAS2R50 involvement in the RSV-induced reduction of the LPS-evoked IL-6 release in HGT-1 cells.


Interleukin-6 , Receptors, G-Protein-Coupled/physiology , Resveratrol , Taste , Anti-Inflammatory Agents , Fibroblasts , Humans , Interleukin-6/genetics , Resveratrol/pharmacology
11.
Mol Nutr Food Res ; 65(2): e2000472, 2021 01.
Article En | MEDLINE | ID: mdl-33249735

SCOPE: This study investigates the effect of the sweetness of a sucrose versus an isocaloric glucose solution in dietary concentrations on blood glucose regulation by adjusting the sweetness level using the sweet taste inhibitor lactisole. METHODS AND RESULTS: A total of 27 healthy males participated in this randomized, crossover study with four treatments: 10% glucose, 10% sucrose, 10% sucrose + 60 ppm lactisole, and 10% glucose + 60 ppm lactisole. Plasma glucose, insulin, glucagon-like peptide 1, and glucagon levels are measured at baseline and 15, 30, 60, 90, and 120 min after beverage consumption. Test subjects rated the sucrose solution to be sweeter than the isocaloric glucose solution, whereas no difference in sweetness is reported after addition of lactisole to the sucrose solution. Administration of the less sweet glucose solution versus sucrose led to higher blood glucose levels after 30 min, as reflected by a lower ΔAUC for sucrose (1072 ± 136) than for glucose (1567 ± 231). Application of lactisole leads to no differences in glucose, insulin, or glucagon responses induced by sucrose or glucose. CONCLUSION: The results indicate that the structure of the carbohydrate has a stronger impact on the regulation of blood glucose levels than the perceived sweetness.


Blood Glucose/metabolism , Glucose/administration & dosage , Sucrose/administration & dosage , Taste Perception , Administration, Oral , Adolescent , Adult , Blood Glucose/analysis , Glucagon/blood , Glucagon-Like Peptide 1/blood , Healthy Volunteers , Humans , Insulin/blood , Male , Middle Aged , Young Adult
12.
Nutrients ; 12(10)2020 Oct 14.
Article En | MEDLINE | ID: mdl-33066498

Knowledge regarding the involvement of sweetness perception on energy intake is scarce. Here, the impact of glucose and sucrose sweetness, beyond their caloric load, on subsequent food intake and biomarkers of satiation was evaluated by co-administration of the sweet taste receptor inhibitor lactisole. A total of 27 healthy, male subjects received solutions of either 10% glucose w/o 60 ppm lactisole or 10% sucrose w/o 60 ppm lactisole. Subsequent food intake from a standardized breakfast was evaluated 2 h after receiving the respective test solution. Changes in postprandial plasma concentrations of cholecystokinin, ghrelin, and serotonin were determined over a period of 120 min, as was the body temperature. Administration of lactisole to the sucrose solution increased the energy intake from the subsequent standardized breakfast by 12.9 ± 5.8% (p = 0.04), led to a decreased Δ AUC of the body core temperature by 46 ± 20% (p = 0.01), and time-dependently reduced Δ serotonin plasma concentrations (-16.9 ± 6.06 ng/mL vs. -0.56 ± 3.7 ng/mL after sucrose administration, p = 0.03). The present study shows that lactisole increases energy intake and decreases plasma serotonin concentrations as well as body core temperature induced by sucrose, but not glucose. This finding may be associated with the different binding affinities of sucrose and glucose to the sweet taste receptor.


Benzene Derivatives/administration & dosage , Dietary Sucrose/administration & dosage , Eating/physiology , Energy Intake/physiology , Satiation/physiology , Serotonin/blood , Serotonin/metabolism , Sugar-Sweetened Beverages , Taste Buds/metabolism , Taste Perception/physiology , Adolescent , Adult , Body Temperature , Breakfast , Cholecystokinin/blood , Dietary Sucrose/metabolism , Ghrelin/blood , Glucose/metabolism , Healthy Volunteers , Humans , Male , Middle Aged , Postprandial Period , Young Adult
13.
Food Chem X ; 7: 100100, 2020 Sep 30.
Article En | MEDLINE | ID: mdl-32904296

A reduction in sugar consumption is desirable from a health point of view. However, the sensory profiles of alternative sweet tasting compounds differ from sucrose regarding their temporal profile and undesired side tastes, reducing consumers' acceptance. The present study describes a sensory characterization of a variety of sweet and sweet taste affecting compounds followed by a comparison of similarity to sucrose and a multivariate regression analysis to investigate structural determinants and possible interactions for the temporal profile of the sweetness and side-tastes. The results of the present study suggest a pivotal role for the number of ketones, aromatic rings, double bonds and the M LogP in the temporal profile of sweet and sweet taste affecting compounds. Furthermore, interactions between aggregated physicochemical descriptors demonstrate the complexity of the sensory response, which should be considered in future models to predict a comprehensive sensory profile of sweet and sweet taste affecting compounds.

14.
Biomolecules ; 10(5)2020 05 02.
Article En | MEDLINE | ID: mdl-32370178

The intake of dietary lipids is known to affect the composition of phospholipids in gastrointestinal cells, thereby influencing passive lipid absorption. However, dietary lipids rich in polyunsaturated fatty acids, such as vegetable oils, are prone to oxidation. Studies investigating the phospholipid-regulating effect of oxidized lipids are lacking. We aimed at identifying the effects of oxidized lipids from moderately (18.8 ± 0.39 meq O2/kg oil) and highly (28.2 ± 0.39 meq O2/kg oil) oxidized and in vitro digested cold-pressed grape seed oils on phospholipids in human gastric tumor cells (HGT-1). The oils were analyzed for their antioxidant constituents as well as their oxidized triacylglycerol profile by LC-MS/MS before and after a simulated digestion. The HGT-1 cells were treated with polar oil fractions containing epoxidized and hydroperoxidized triacylglycerols for up to six hours. Oxidized triacylglycerols from grape seed oil were shown to decrease during the in vitro digestion up to 40% in moderately and highly oxidized oil. The incubation of HGT-1 cells with oxidized lipids from non-digested oils induced the formation of cellular phospholipids consisting of unsaturated fatty acids, such as phosphocholines PC (18:1/22:6), PC (18:2/0:0), phosphoserine PS (42:8) and phosphoinositol PI (20:4/0:0), by about 40%-60%, whereas the incubation with the in vitro digested oils did not affect the phospholipid metabolism. Hence, the gastric conditions inhibited the phospholipid-regulating effect of oxidized triacylglycerols (oxTAGs), with potential implications in lipid absorption.


Antioxidants/metabolism , Digestion , Gastric Juice/metabolism , Phospholipids/metabolism , Plant Oils/metabolism , Cell Line, Tumor , Fatty Acids, Omega-3/metabolism , Gastric Mucosa/cytology , Gastric Mucosa/metabolism , Humans , Oxidation-Reduction , Triglycerides/metabolism , Vitis/chemistry
16.
J Agric Food Chem ; 68(13): 3924-3932, 2020 Apr 01.
Article En | MEDLINE | ID: mdl-32162915

Activation of the transient receptor potential (TRP) channel TRPA1 by cinnamaldehyde has been shown to stimulate serotonin release in enterochromaffin QGP-1 cells. However, the impact of cinnamaldehyde on serotonin release in enterocytes is less well understood. In addition, since the neurotransmitter serotonin plays a regulatory role in a large variety of gastrointestinal and metabolic functions, it is of interest to study which structural characteristics determine cinnamaldehyde-induced serotonin release by enterocytes. Thus, the present study analyzed serotonin release in differentiated Caco-2 cells as a model for enterocytes in comparison to enterochromaffin QGP-1 cells after stimulation with cinnamaldehyde and 17 naturally occurring structurally related compounds by means of a serotonin ELISA. Stimulation with cinnamaldehyde induced a dose-dependent increase in serotonin release starting from 0.5 mM in both cell lines, with a larger effect size in Caco-2 enterocytes compared to that in QGP-1 enterochromaffin cells. Serotonin release in Caco-2 cells induced by additional 17 structurally related compounds correlated with serotonin release in QGP-1 cells, showing the highest effects for coniferylaldehyde with a 15.84 ± 3.23-fold increase in Caco-2 cells, followed by the parent compound cinnamaldehyde (13.45 ± 2.15), cinnamyl alcohol (6.68 ± 1.08), and α-methyl-cinnamaldehyde (6.59 ± 0.93). Analysis of structural and molecular characteristics that modulate serotonin release in Caco-2 enterocytes revealed that the ability of a compound to activate TRPA1, demonstrated by means of HEK293 cells transiently expressing hTRPA1, is a decisive factor to stimulate serotonin release in Caco-2 enterocytes, preferring small, electrophilic compounds with a lower polar surface area. In addition, blocking of TRPA1 using 30 µM AP-18 significantly reduced the cinnamaldehyde-induced serotonin release by 30.0 ± 5.24%, confirming a TRPA1-dependent component in serotonin release by Caco-2 cells.


Acrolein/analogs & derivatives , Intestinal Mucosa/metabolism , Serotonin/metabolism , TRPA1 Cation Channel/metabolism , Acrolein/chemistry , Acrolein/metabolism , Caco-2 Cells , HEK293 Cells , Humans , Kinetics , Molecular Structure , TRPA1 Cation Channel/genetics
17.
ACS Omega ; 5(51): 33305-33313, 2020 Dec 29.
Article En | MEDLINE | ID: mdl-33403292

The cinnamon-derived bioactive aroma compound cinnamaldehyde (CAL) has been identified as a promising antiobesity agent, inhibiting adipogenesis and decreasing lipid accumulation in vitro as well as in animal models. Here, we investigated the antiadipogenic effect of cinnamyl isobutyrate (CIB), another cinnamon-derived aroma compound, in comparison to CAL in 3T3-L1 adipocyte cells. In a concentration of 30 µM, CIB reduced triglyceride (TG) and phospholipid (PL) accumulation in 3T3-L1 pre-adipocytes by 21.4 ± 2.56 and 20.7 ± 2.05%, respectively. CAL (30 µM), in comparison, decreased TG accumulation by 37.5 ± 1.81% and PL accumulation by 28.7 ± 1.83%, revealing the aldehyde to be the more potent antiadipogenic compound. The CIB- and CAL-mediated inhibition of lipid accumulation was accompanied by downregulation of essential adipogenic transcription factors PPARγ, C/EBPα, and C/EBPß on gene and protein levels, pointing to a compound-modulated effect on adipogenic signaling cascades. Coincubation experiments applying the TRPA-1 inhibitor AP-18 demonstrated TRPA1 dependency of the CAL, but not the CIB-induced antiadipogenic effect.

18.
Molecules ; 24(19)2019 Oct 07.
Article En | MEDLINE | ID: mdl-31591297

With raising prevalence of obesity, the regulation of human body fat is increasingly relevant. The modulation of fatty acid uptake by enterocytes represents a promising target for body weight maintenance. Recent results demonstrated that the trigeminal active compounds capsaicin, nonivamide, and trans-pellitorine dose-dependently reduce fatty acid uptake in differentiated Caco-2 cells as a model for the intestinal barrier. However, non-pungent alternatives have not been investigated and structural determinants for the modulation of intestinal fatty acid uptake have not been identified so far. Thus, based on the previous results, we synthesized 23 homovanillic acid esters in addition to the naturally occurring capsiate and screened them for their potential to reduce intestinal fatty acid uptake using the fluorescent fatty acid analog Bodipy-C12 in differentiated Caco­2 cells as an enterocyte model. Whereas pre-incubation with 100 µM capsiate did not change fatty acid uptake by Caco-2 enterocytes, a maximum inhibition of -47% was reached using 100 µM 1­methylpentyl-2-(4-hydroxy-3-methoxy-phenyl)acetate. Structural analysis of the 24 structural analogues tested in the present study revealed that a branched fatty acid side chain, independent of the chain length, is one of the most important structural motifs associated with inhibition of fatty acid uptake in Caco-2 enterocytes. The results of the present study may serve as an important basis for designing potent dietary inhibitors of fatty acid uptake.


Esters/chemistry , Esters/pharmacology , Fatty Acids/metabolism , Homovanillic Acid/chemistry , Biological Transport/drug effects , Caco-2 Cells , Capsaicin/analogs & derivatives , Capsaicin/chemical synthesis , Capsaicin/chemistry , Cell Differentiation , Enterocytes/metabolism , Esters/chemical synthesis , Homovanillic Acid/metabolism , Humans
19.
J Agric Food Chem ; 67(42): 11638-11649, 2019 Oct 23.
Article En | MEDLINE | ID: mdl-31532204

Naturally occurring cinnamon compounds such as cinnamaldehyde (CAL) and structurally related constituents have been associated with antiobesity activities, although studies regarding the impact on intestinal fatty acid uptake are scarce. Here, we demonstrate the effects of CAL and structural analogues cinnamyl alcohol (CALC), cinnamic acid (CAC), and cinnamyl isobutyrate on mechanisms regulating intestinal fatty acid uptake in differentiated Caco-2 cells. CAL, CALC, and CAC (3000 µM) were found to decrease fatty acid uptake by 58.0 ± 8.83, 19.4 ± 8.98, and 21.9 ± 6.55%, respectively. While CAL and CALC at a concentration of 300 µM increased serotonin release 14.9 ± 3.00- and 2.72 ± 0.69-fold, respectively, serotonin alone showed no effect on fatty acid uptake. However, CAL revealed transient receptor potential channel A1-dependency in the decrease of fatty acid uptake, as well as in CAL-induced serotonin release. Overall, CAL was identified as the most potent of the cinnamon constituents tested.


Acrolein/analogs & derivatives , Cinnamates/pharmacology , Cinnamomum zeylanicum/chemistry , Fatty Acids/metabolism , Plant Extracts/pharmacology , Propanols/pharmacology , Acrolein/chemistry , Acrolein/pharmacology , Biological Transport/drug effects , Caco-2 Cells , Cell Differentiation , Cinnamates/chemistry , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Plant Extracts/chemistry , Propanols/chemistry
20.
Mol Nutr Food Res ; 63(23): e1900133, 2019 12.
Article En | MEDLINE | ID: mdl-31535460

SCOPE: Increasing the intake of satiety-enhancing food compounds represents a promising strategy for maintaining a healthy body weight. Recently, satiating effects for the capsaicinoid nonivamide have been demonstrated. As various proteins and amino acids have also been demonstrated to decrease energy intake, oral glucose tolerance test (oGTT)-based bolus interventions of 75 g glucose + 0.15 mg nonivamide (NV control) are tested with/without combination of a wheat protein hydrolysate (WPH: 2 g) and/or l-arginine (ARG: 3.2 g) for their satiating effects in 27 moderately overweight male subjects. METHODS AND RESULTS: Compared to NV control intervention, ARG and WPH + ARG treatment both reduce (p < 0.01) total calorie intake from a standardized breakfast by -5.9 ± 4.15% and -6.07 ± 4.38%, respectively. For the WPH + ARG intervention, increased mean plasma serotonin concentrations (AUC: 350 ± 218), quantitated by ELISA, and delayed gastric emptying, assessed by 13 C-Na-acetate breath test (-2.10 ± 0.51%, p < 0.05), are demonstrated compared to NV control. Correlation analysis between plasma serotonin and gastric emptying reveals a significant association after WPH ± ARG intervention (r = -0.396, p = 0.045). CONCLUSION: Combination of WPH and ARG enhances the satiating effect of nonivamide, providing opportunities to optimize satiating food formulations by low amounts of the individual food constituents.


Arginine/administration & dosage , Capsaicin/analogs & derivatives , Overweight/psychology , Protein Hydrolysates/administration & dosage , Satiation/drug effects , Triticum/chemistry , Adult , Capsaicin/pharmacology , Cross-Over Studies , Energy Intake , Gastric Emptying/drug effects , Humans , Male , Middle Aged , Serotonin/blood , Single-Blind Method
...